13,919 research outputs found

    Hard X-ray Emission and the Ionizing Source in LINERs

    Get PDF
    We report X-ray fluxes in the 2--10 keV band from LINERs (low-ionization nuclear emission-line regions) and low-luminosity Seyfert galaxies obtained with the ASCA satellite. Observed X-ray luminosities are in the range between 4e39 and 5e41 ergs/s, which are significantly smaller than that of the ``classical'' low-luminosity Seyfert 1 galaxy NGC 4051. We found that X-ray luminosities in 2--10 keV of LINERs with broad Halpha emission in their optical spectra (LINER 1s) are proportional to their Halpha luminosities. This correlation strongly supports the hypothesis that the dominant ionizing source in LINER 1s is photoionization by hard photons from low-luminosity AGNs. On the other hand, the X-ray luminosities of most LINERs without broad Halpha emission (LINER 2s) in our sample are lower than LINER 1s at a given Halpha luminosity. The observed X-ray luminosities in these objects are insufficient to power their Halpha luminosities, suggesting that their primary ionizing source is other than an AGN, or that an AGN, if present, is obscured even at energies above 2 keV.Comment: 11 pages, 3 figures, To appear in the Astrophyscal Jouna

    Zero-temperature spin-glass freezing in self-organized arrays of Co nanoparticles

    Get PDF
    We study, by means of magnetic susceptibility and magnetic aging experiments, the nature of the glassy magnetic dynamics in arrays of Co nanoparticles, self-organized in N layers from N=1 (two-dimensional limit) up to N=20 (three-dimensional limit). We find no qualitative differences between the magnetic responses measured in these two limits, in spite of the fact that no spin-glass phase is expected above T=0 in two dimensions. More specifically, all the phenomena (critical slowing down, flattening of the field-cooled magnetization below the blocking temperature and the magnetic memory induced by aging) that are usually associated with this phase look qualitatively the same for two-dimensional and three-dimensional arrays. The activated scaling law that is typical of systems undergoing a phase transition at zero temperature accounts well for the critical slowing down of the dc and ac susceptibilities of all samples. Our data show also that dynamical magnetic correlations achieved by aging a nanoparticle array below its superparamagnetic blocking temperature extend mainly to nearest neighbors. Our experiments suggest that the glassy magnetic dynamics of these nanoparticle arrays is associated with a zero-temperature spin-glass transition.Comment: 6 pages 6 figure

    Probing QCD approach to thermal equilibrium with ultrahigh energy cosmic rays

    Full text link
    The Pierre Auger Collaboration has reported an excess in the number of muons of a few tens of percent over expectations computed using extrapolation of hadronic interaction models tuned to accommodate LHC data. Very recently, we proposed an explanation for the muon excess assuming the formation of a deconfined quark matter (fireball) state in central collisions of ultrarelativistic cosmic rays with air nuclei. At the first stage of its evolution the fireball contains gluons as well as uu and dd quarks. The very high baryochemical potential inhibits gluons from fragmenting into uuˉu \bar u and ddˉd \bar d, and so they fragment predominantly into ssˉs \bar s pairs. In the hadronization which follows this leads to the strong suppression of pions and hence photons, but allows heavy hadrons to be emitted carrying away strangeness. In this manner, the extreme imbalance of hadron to photon content provides a way to enhance the muon content of the air shower. In this communication we study theoretical systematics from hadronic interaction models used to describe the cascades of secondary particles produced in the fireball explosion. We study the predictions of one of the leading LHC-tuned models QGSJET II-04 considered in the Auger analysis.Comment: 7 pages LaTeX, 6 .pdf figure

    Optimal cellular mobility for synchronization arising from the gradual recovery of intercellular interactions

    Full text link
    Cell movement and intercellular signaling occur simultaneously during the development of tissues, but little is known about how movement affects signaling. Previous theoretical studies have shown that faster moving cells favor synchronization across a population of locally coupled genetic oscillators. An important assumption in these studies is that cells can immediately interact with their new neighbors after arriving at a new location. However, intercellular interactions in cellular systems may need some time to become fully established. How movement affects synchronization in this situation has not been examined. Here we develop a coupled phase oscillator model in which we consider cell movement and the gradual recovery of intercellular coupling experienced by a cell after movement, characterized by a moving rate and a coupling recovery rate respectively. We find (1) an optimal moving rate for synchronization, and (2) a critical moving rate above which achieving synchronization is not possible. These results indicate that the extent to which movement enhances synchrony is limited by a gradual recovery of coupling. These findings suggest that the ratio of time scales of movement and signaling recovery is critical for information transfer between moving cells.Comment: 18 single column pages + 1 table + 5 figures + Supporting Informatio

    Optimal probabilistic estimation of quantum states

    Get PDF
    We extend the concept of probabilistic unambiguous discrimination of quantum states to quantum state estimation. We consider a scenario where the measurement device can output either an estimate of the unknown input state or an inconclusive result. We present a general method how to evaluate the maximum fidelity achievable by the probabilistic estimation strategy. We illustrate our method on two explicit examples: estimation of a qudit from a pair of conjugate qudits and phase covariant estimation of a qubit from N copies. We show that by allowing for inconclusive results it is possible to reach estimation fidelity higher than that achievable by the best deterministic estimation strategy.Comment: 7 pages, 2 figures, ReVTeX

    Probing Split Supersymmetry with Cosmic Rays

    Full text link
    A striking aspect of the recently proposed split supersymmetry is the existence of heavy gluinos which are metastable because of the very heavy squarks which mediate their decay. In this paper we correlate the expected flux of these particles with the accompanying neutrino flux produced in inelastic pppp collisions in distant astrophysical sources. We show that an event rate at the Pierre Auger Observatory of approximately 1 yr−1^{-1} for gluino masses of about 500 GeV is consistent with existing limits on neutrino fluxes. The extremely low inelasticity of the gluino-containing hadrons in their collisions with the air molecules makes possible a distinct characterization of the showers induced in the atmosphere. Should such anomalous events be observed, we show that their cosmogenic origin, in concert with the requirement that they reach the Earth before decay, leads to a lower bound on their proper lifetime of the order of 100 years, and consequently, to a lower bound on the scale of supersymmetry breaking, ΛSUSY>2.6×1011\Lambda_{\rm SUSY} >2.6 \times 10^{11} GeV. Obtaining such a bound is not possible in collider experiments.Comment: Version to be published in Phys. Rev.
    • …
    corecore